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P O S T B U C K L I N G  B E H A V I O R  O F  AN I D E A L  

B A R  O N  AN E L A S T I C  F O U N D A T I O N  

N. S. Astapov and V. M. Kornev UDC 539.3 

The differential equation of equilibrium of a bent bar axis [I-3] or the integral expression of the system's potential 
energy [1, 4-7] are conventionally used as the starting expression in analyzing the stability of a bar on elastic foundation. 

Equal values of the critical loads for the buckling of the system are obtained in both cases. With the advent of the 

catastrophe theory, these results were elucidated from a new, more common viewpoint providing a clear description of the 

influence of initial imperfections on the behavior of the system. 

Nevertheless, postbuckling behavior of the bar-foundation system has not been sufficiently studied. In the present 
paper the modes of buckling and postbuckling behavior are studied by the perturbation theory method within the framework 

of three mathematical models, two of which are classical. It appeared that all three models provide dissimilar description of 
the postbuckling behavior of the system. A distinctive feature of the problems under consideration is the fact that several 
possible forms of bar buckling correspond to certain values of rigidity of an elastic foundation, i.e., the appropriate 

eigenfunction and eigermumber problems have multiple eigenvalues. 
1. Statement of the Problem. Consider a hinge-supported bar of length L lying on elastic foundation and loaded by 

axial compression P whose value and direction remain invariant upon deformation of the bar (Fig. 1). The length L of the bar 
axis is assumed to be invariable. Denote the distance between the bar ends by l. Assume that the bar axis may bend in the plane 
(x, y) only. Let us study the buckling modes and postbuckling behavior of the bar-foundation system with the use of different 

models (Figs. 1 and 2) describing the behavior of the system. 
2. Classical Model of an Elastic Foundation. Suppose that, in bending, the reaction forces of an elastic foundation 

at every point of the bar are invariably directed upright to the Ox axis (Fig. 1) and proportional to the bar deflection. In this 
case the expression for the total potential energy of the bar is written [5] 

L 

I c f  w2ds, (2.1/ I E i  Lf • _ P(L - I) + 2  
{I o 

where EI is the bending stiffness, x is the curvature of the bar axis, c is the stiffness coefficient of the foundation, and s is 

the length of the arc of the bar axis. The function w(s) (0 _< s _< L) completely determines the strained state of the bar and 
should satisfy the geometrical boundary conditions of the problem: 

w(0) = w(L) = ~,(0) = w(:.) -- 0. 

Let us express the curvature x and distance, I in terms of the function w(s) and substitute it into Eq. (2.1). To accuracy up 

to fourth-order terms involving the function w(s) and its derivatives, we obtain 

el j" +  ,Ids - P + - ds + f (2.2) 

The Euler equation for this functional may be written as 
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Elw.~, + E I ( ~ ,  + 4ww .)w + P(I + ~ / 2 ) w  + cw(l - ~ )  = O. (2.3) 

We introduce a new variable z = ~rs/L and function W such that w = c~W, where ~ is of  the same order of  smallness as the 
deflection amplitude. Denote r = c(Lhr)4/EI, and by e, the small parameter: e = 7r2(~/L) 2. With this notation Eq. (2.3) and 

the boundary conditions take the form 

(A o + EA~)W -- A(Bo + eB~)W = 0 , W ( 0 )  = W ( z )  = W=(0)  = W = ( ~ )  = 0. (2.4) 

Here A = P(Lhr)2EI; A o, B o and A 1 , B 1 are linear and nonlinear operators, 

Ao = (...) .... + r( . . . ) ,  ao = - ( . . . ) = ,  
At = ( . . . )3 + 4(.. .)~(.. .)=(.. .)z.._ r(.. .) (...)~, B~ = - ( . . . ) ~ ( . . . ) z J 2 .  

The trivial solution W -=- 0 of the problem (2.4) relates to unbuckled equilibrium of the system for all A, the magnitude of 

potential energy (2.2) being equal to zero in this case. Further, we will be concerned only with curved equilibrium states. The 

eigenfunction and eigennumber problem (2.4) for e = 0 is called unperturbed. We obtain the eigenfunction 

Wn (~ = "/n sin nz 

and the eigennumbers of the unperturbed (linearized) problem 

A~ ~ = n 2 + r / n  2, 

the eigennumbers with numbers n and n + 1 being multiples, i.e., An(0) = An+1 (~ i f r  = n2(n+ 1) 2. Consider the two cases 

separately. 
A. Prime Eigenvalue, i .e.,  r ~ n2(n+ 1) 2. Let us calculate the eigennumbers and eigenfunctions of  the problem (2.4) 

using the perturbation theory method [8, 9]. For this purpose, we represent the eigenvalues W n and eigennumbers A n of the 

perturbed problem as asymptotic series with respect to e: 

_kA(k) 
14,'. = Ir ~ + e * ~  k), A = A (~ + ~ " .  (2.5) 

k~l k=l  

where Wn(0) and An(0) are the eigenvalues and numbers of the unperturbed problem. The normalization condition for the 

unperturbed problem are preset by the relationship (BoWi (~ Wj (0)) = aij, (aij are the Kronecker symbols) and, for the 

perturbed problem, also by the relationship (Wi (~ WiO)) = 0 [9]. We substitute the asymptotic expansions (2.5) into the 

equation and boundary conditions of the problem (2.4) and equate to zero the coefficients of  the powers of e. Using the 

normalization conditions, we fmd the expansions An and W n to accuracy up to first power terms in e. We can show the 
coincidence of the accuracy of ~ of  the thus computed eigenvalues with the exact values for a bar without elastic foundation, 

i.e., when r = 0. In our case, substituting the expansion (2.5) in Eqs. (2.4) and equating to zero the coefficient of  e, we obtain 

287 



_ A t I ~ B  14/0) w~O~ t0~ l~ = O. (2.6) Aol4/~t' + Zl n A (BoI4~, , + BxW:  )) -- n o . 

Substituting the expansion of  the function Wn (1) into a series in Eq. (2.6), 

IC o) 14~,t' = E a,,, j 
i=1 

with respect to the eigenfunctions Wn (~ of  the unperturbed equation and using the normalization conditions, we obtain Finally 

A(n (AtlCo,, w~O)) _ to, o, O, . = A ( B , ~  , w'.~ ,=.. = 

a ,  = r A ? ( . , , <  ~ - ^to,,,, , ,  j .  , , .  

Having calculated these quantities, we find that the eigenfunctions and eigennumbers of  the perturbed problem (2.4), with 

accuracy up to e, have the form 

W.(z )  = y sinnz - 9e(3n 4 - r )y3 . s in3nz / (9n  4 - r) /32at ,  

A .  = n 2 + r / n  2 + ey2n (n  '~ - -  3 r ) / 8 ,  

where  "yn2n 2 = 2/7r from the normalization conditions. The expression for A n may be wriuen as 

P = g I ( z~ /L )2 ln  2 + r / n  2 + ~z2y~(n ' - 3r) ( a / L ) 2 / 8  t. (2.7) 

Analyzing (2.7), we observe that the postbuckling behavior of the system is stable with respect to the mode wn(s ) = t~Wn(z(s)) 

when n 4 > 3r, and unstable when n 4 < 3r. If n 4 = 3r, the postbuckling behavior of  the system is neutral to accuracy up to 
E .  

The dependence An (~ on r for n = 1, 2, 3, 4 [2, 4, 5] is shown in Fig. 3. At the bottom the influence of  maximum 

deflection on load is shown schematically for each of the mode of w n (n = i, 2, 3, 4) in the subdomains into which the range 

of  r is split by the abscissas of  the points of  intersection of the straight lines and the values r = n4/3 (n = 1, 2, 3, 4). The 

points of the straight lines An (~ with abscissas equal to n4/3 are denoted by the symbol H T .  The initial model chosen for 

describing the behavior of  the system determines the arrangement of the points H n at appropriate straight lines, for example, 

Eq. (2.3). It should be noted that only one branch of the load-deflection dependence is realized. We describe in more detail 

the postbuckling behavior of  the system. The value t~ corresponding to the mode w n = txW n is calculated for a specific value 

of the load P from Eq. (2.7) and is henceforth denoted by %. Since the deflection amplitude of  the w n mode is approximately 

equal to %~'n, it makes sense to consider only such values of % for which [ tXn'Yn [ < L/(2n). A part (r < 2n4/3) of the plot 

of the function A n = An(%3,n/L, r) describing stable (r < n4/3) and unstable (n4/3 < r < 2n4/3) postbuclding behavior of 

the ideal system that assumes the w n mode is presented in Fig. 4. When r = 0, the classical problem of buckling of a bar 

without foundation is obtained, the postbuckling behavior of this system being always stable, the line of intersection of the 

surface An and the plane r = const is a parabola whose branches are directed upward when r < n4/3, and downward when 

r > n4/3, and downward when r > n4/3. The cross section of the surface A n and the plane o~nTn/L = const is a straight line. 

B. Multiple Eigenvalue, i .e.,  r = n2(n + 1) 2. Denote the points of intersection of  the straight lines An (0) and An+l (~ 

by the symbol Kn, n+l (Fig. 3) and consider the postbuckling behavior of the system in the neighborhood of  these points, i.e, 

for small deflections. In this case several eigenfunctions correspond to one eigenvalue, and the appropriate formulas take a 

different form. Unlike Eq. (2.5) the eigenfunctions and eigermumbers of the perturbed problem (2.4) will be sought as follows: 

W =1~~  e w~,,Am = A m  + 
k= 1 k - - I  

rio) P,,,,, W(~ + P, , . , * l  , , - l  m = n,  n + 1. 

(2 .8)  
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Substituting the expansions (2.8) in the Eq. (2.4), equating to zero the coefficient of e, and obtaining scalar product of the result 

by Wm (~ we obtain a system of two equations for determining AnO) (and analogously for An+l(1)): 

A~)(B,~ m, W~ ~ + A~)(Bo/m, W~ m) - (A,/~), W(m) = O, m = n, n + 1, (2.9) 

as well as the relations for calculating the coefficient amj: 

= IA(mrB #o, W~jO,) _ (At~mO,, W<m,~ l/(A~ m A c~ a,.i . , .  F , , , ,  i - - ~ j ,  j ~: m = n ,  n + 1. 

From the system of equations (2.9) we express Pro, n + l  and Am (1) in terms OfPrn n for Prn, n + l  ~ 0 ,  Pmn # 0: 

p,,~+~2 = 13n 2 -- (n + 1)~] /13(n+l )  2 -- n 2 1 0 ~  = R ( n ) p ~ , , ;  (2.10) 

A(I )  I - 7 n 4  + 2n2(n+l)2- 7 ( n + 1 ) 4  2 1 

" - 4 =  3 ( n + l )  2 - n 2 P "  = 4-'~ D(n)Pz'~" (2.11) 

Note that the coefficient R(n) in Eq. (2.10) is greater than zero for all n _ 2. Consequently, apart from the modes w n and 

wn+ l, for the foundation stiffness r = n 2 (n + 1) 2 the system can take the following forms, when n >_ 2: 

w * ( s )  = c t { p , , ~ y n s i n ( n ~ s / L  ) + pm~+ly.+lsin((n + l ) ~ s / L )  § O(e)}, m = n, n + 1, (2.12) 

where the coefficients Pmj are connected by the relationship (2.10), and the symbol O ( z )  denotes terms of  the first degree and 

higher with respect to t.  The appropriate eigennumbers with accuracy p to e = ~ (~ /L )  2 will be of  the form 

A~ = n 2 + (n + 1) 2 + ~ O ( n ) p ~ ( c t / L ) 2 / 4 ,  m = n ,  n + 1. (2.13) 

Postbuckling behavior of  the system in this case is unstable, because D(n) < 0 for every n > 0. As a result, we have the 

following: At the point K12, i.e., for r = 4, postbuckling behavior is stable with respect to the w 2 mode and unstable with 

respect to the w 1 mode, and there is no other curved mode at this point. At all other points Kn, n+ 1 (n _> 2) the postbuckling 

behavior of  the system is unstable with respect to all of the possible modes, which can be easily checked. 

Let us consider the behavior of  the system at the points Kn, n+ 1 (n >_ 2). First, we compare the maximum deflections 

of the modes w m and win* (m = n, n + 1) for a timed value of the load. Using Eq. (2.7), we obtain 

(a.+yn§ 2 = I 3 r -  n 4 1 / 1 3 r -  (n  + 1) ' l  (a.9'n)~ > ( aA ' )  2 

for every n _> 2, i.e., the maximum deflection of  the mode wn+ 1 is greater than the w n deflection. We estimate the value of  

the maximum deflection the Wn* mode to the second order with respect to a 2. Taking into account that R(n) < I for n _> 2, 
we obtain 
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Moroever, it is evident that 

max - - -  max ct Ip~,  sinnz + p~.~§247 + 1)zl >~ 

maxl~[ < ' ~ 7 ~ + , l p . l ( ( n  + l ) / n  + d'~'(n)). 
O,~z~at 

We compare the maximum deflections of the modes Wn+ 1 and w n . Using Eqs. (2.7) and (2.13), we express Otpn n in terms of 

C~n+ 1 as follows: 

(ap,~) 2 =  [(n + 1) 2 -  3n2l/D(n)a2,,§ = Dl(n)a2,,+r 

After calculations, we obtain, for n _< 5, 

max w~ .2 < Dl(n) ((n + 1 ) / n  + RvrR'(~(n))2(a +tyn§ 2 < (an§ 2, 
O~z~;~ 

i.e,, the deflection of the w n mode is less than the maximum deflection of the Wn+ z mode. However, since 

Dl(n ) < Dl(n + 1) < l i m D l ( m  ) = I / 3 ,  R(n)  < R(n  + 1) < l i m R ( m )  = 1, 
m an 

It can be easily shown that, for all n > 0, the maximum deflection of the w n mode is larger than the Wn+ 1 deflection. It can 

be proved in the same manner that the maximum w n deflection is always larger than the w n deflection. Finally, we show that 

the maximum deflections of the Wn* and Wn+l* modes coincide. Using Eq. (2.13), we note that (O~Pnn) 2 = (t~Pn+l,n) 2 for one 
and the same magnitude of  the load P. Since 

max l a s i n n z  + bsin(n + 1)z I = max l a s i n n z  - bsin(n + l)z l, 

the maximum deflections of  the Wn* and Wn+l* modes coincide. Figure 5 presents two markedly different cases of  the mutual 

arrangement of  the parabolas, demonstrating the dependence of the maximum deflection on the load for all of  he possible 

curved buckling modes. Now let us classify the different buckling modes for any fixed value of  the load P by means of their 

corresponding values of  potential energy [10]. From the expression (2.2) and the analytical representation of  the buckling 

modes, it is evident that to calculate the potential energy to accuracy up to et 4 it suffices to take into account terms containing 

c~ to the first power in expressing each of the possible buckling modes. For the w n we have the potential energy 

and for the w n+ 1 mode 

U,, = L(zt/L)~Ela~},4n2[- n4 + 3 r ] / 6 4  

Un. t = L(zc/L)6Ela~+ly~+l(n + 1) 5 [ - (n + I) 4 + 3r1/64.  

(2.14) 
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Since for r = n 2 (n + 1) 2 (n >__ 2) and fixed load P we have (%+13%+1) 2 = (n 4 - 3r ) / [ (n+l)  4 - 3r](%'),n) 2, it follows that 

Un+ t > U n for any n > 2. Expressing an, n+l in terms Of Pmn (2.10), and C~Pnn in terms of(x n, we f'md the potential energy 

for the w n mode: 

= L(Jr/L)6Ela~y:n4[n 2 + (n + 1) 21 In s - 3(n + 1)212/ 

[7n' - 2n2(n + 1) 2 + 7(n + 1)4]/32. 

Hence, we deduce that U n > Un* > 0 for any n >_ 2. Moreover, Un* = Un+l* because Pn+l,n 2 -- Pnn 2 and the equality 

(2.10) holds, and the coefficients Pn + 1, m included in the expression for the potential energy U n+ 1" fire everywhere to the even 
power. Thus, we fmd that for fixed values of the stiffness coefficients of the foundation r = n2(n + 1) 2 (n ~ 2) and load P, 

the energies of  the branches of  the solution are arranged as follows: Un+ 1 > U n > Un* = Un+l* .  Assuming that the system 

selects the state with the least energy, the appropriate buckling mode is of the form Wn* or  Wn+l*. However, the potential 

energy (2.2) of  the system having the uncurved mode w = 0 is equal to zero, and, moreover, Un* = Un+l* > 0. Thus, the 

rectilinear equilibrium state w --- 0 is the most probable in this model. Note that the expression (2.14) for the potential energy 

of the system assumes the mode w n is in the form of the germ of a cusp catastrophe, when r > n4/3; in the form of dual cusp, 

when r < n4/3; and in the form of the germ of a more complicated catastrophe than the cusp, when r = n4/3. To put this in 

another way, in this model a change in the type of catastrophe is observed at the points Hn T, i.e., the requirement of  structural 

stability of  the family of  potential functions is violated [11, 12]. Precisely, when r = n4/3, the postbuckling behavior of the 

system with respect to the w n mode becomes unstable (2.7), and the most probable among the unstable branches is rectilinear 

equilibrium. 

3. Nonclassical Model. Let us consider a somewhat different model in which the total potential energy is expressed 

as follows: 
L L w 

1 
U = -~ E1 f • - ,0(r. - 0 + c f f w(l - ~) tndwds .  (3.1) 

0 0 0 

Formula (3.1) differs from Eq. (2.1) only in the multiplier (1 - ws2)1/2 which at any point of  the bar has the form 

(1 - W~) l/z = COSS(S), 

where 0(s) is the angle between the Ox axis and the tangent to the bar axis at this point. Alternatively, the angle 0(s) is equal 

to that between the normals to the bar axis and to the Ox axis (Fig. 2). Thus, this model differs physically from the preceding 

one (Fig. 1) in setting the reaction forces of an elastic foundation. Here (in Fig. 2), during bending, at each point of  the bar 

the reaction forces of  the foundation are always directed to the normal to the curved bar axis and depend linearly on the bar 

curvature w(s) at this point. However, changing over to the vertical direction, i.e., parallel to the Oy axis, we obtain a 

nonlinear dependence cw(1 - Ws2)1/2 of the response of the foundation on the bar deflection (friction between the bar and the 

foundation is neglected). To accuracy up to fourth-order terms in the function w(s) and its derivatives, the Euler equation for 

the functional (3.1) is written as 

row= + m ( ~  + 4w~ , )% + ,o(1 + ~ / 2 ) w .  + c,Kl - ~ / 2 )  = o. (3.2) 

Equation (3.2) differs from Eq. (2.3) only in the coefficient of the term CWWs2. Repeating the operations from item 2, we obtain 
the prime eigenvalue for r ;~ n2(n + 1) 2 
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A = n 2 + r/n 2 + e),](n' - 20/8, (3.3) 

and its corresponding eigenfunction to accuracy up to e: 

14: (z) = },nsin n z  - e3(9n 4 - 2r)3,3~sin 3 n z / ( 9 n  4 -  r ) / 3 2 ~ .  

Recall that e = a'2(tx/L)2; hence the value of a corresponding to the buckling mode w n = c~W n is calculated for a specific value 

of  the load P from the expression (3.3) and is denoted henceforth by a n. It follows from Eq. (3.3) that the postbuckling 

behavior of  the system with respect to the w n mode is stable if n 4 > 2r, and unstable if n 4 < 2r. The points with abscissas 

r = n4/2 at the straight lines An (~ are denoted by the symbols H n in Fig. 3. Apparently the point H n is located to the right 

of the point Hn T at the straight line An (0) for any n. 

In the case of  multiple eigenvalues, i .e.,  when r = n2(n + 1) 2, apart from the modes w n and Wn+ 1, in this model the 

system may take the forms (2.12) for every n _> 1, where Pmj are connected as before by the relationship (2.10), but R(n) = 

n2(n + 1) 2. The eigennumbers are expressed by means of the formula (2.13), but with a new value of  D(n): 

D ( n )  = - [2n 4 - n2(n + 1) 2 + 2(n + 1)41/(n + l )  2, 

and the behavior of  the system in the form (2.12) is also unstable for every n >_ 1, because D(n) < 0. As a result, we have 

the following: In the vicinity of  the points K12 or K23 the postbuckling behavior of the system is stable with respect to the w 2 

or w 3 modes, while it is unstable with respect to all other modes. At all other points Kn, n + 1 (n >_ 3) the postbuckling behavior 

of the system is unstable with respect to all of the possible curved modes. 

Consider in more detail the unstable postbuckling behavior of the system at the points Kn, n+l  (n _> 3). Using the 

formula (3.3), let us compare the maximum deflections of the modes w n and wn+ t for a fixed value of  the load P. Since 

(%+lYn+l)  2 -- (n 4 - 2r)/[(n + 1) 4 - 2r](~n'Yn) 2 > (OtnYn)2 for any n _> 3, the maximum deflection of  the Wn+ 1 mode is 

larger than the deflection of  the w n mode. To compare the maximum deflections of the Wn+ 1 and Wn* modes, we express tXPrm 

in terms of tan+ 1 using Eqs. (3.3) and (2.11) with the appropriate value of Dn: 

(ap,~)  2 = [(n + 1) 2 -- 2n2l /D(n)a2 , ,+l  = D l ( n ) a 2 §  

Since for any n > 12 

max w .2 > D1(n)(l + n/(n + l))2(an§ 2 > (Ctn+l)tn+l) 2, 

upon direct calculations we+ obtain: 1) the maximum deflection of the wn* mode is greater than the deflection of  the Wn+ I mode 

for every n >_ 10, and for 3 <_ n < 9 the deflection of the Wn* mode is less than the maximum deflection of the Wn+ 1 mode, 

2) for every n (1 < n < 9) the maximum wn* deflection is larger than the deflection of the w n mode. 

Now let us compare the values of  potential energies for different buckling modes for a fixed value of  the load P. For 

the w n mode obtain 

= L(~ /L )+EIa4 , y4 ,n21 -  n 4 - 4 r l / 6 4 ,  

and for Wn+ 1 mode we have 

U.. x = L(~/L)6EIa.4+~,.4§ + l)2[-(n + I) + - 4r1/64. 

For the Wn* and Wn+l* modes we obtain, accordingly, 

where 

s247 = L(st / L)+Elct4p 4.~/4n4{ln 2 + (n + l)2lRl(n) • 64n2R2(n)}/64, (3.4) 

4n 4 + 9nZ(n + 1) 2 + 4(n + 1) 4 
R t ( n )  = - ( n  + 1)  + ' 

9n 4 - 2n2(t! + 1) 2 + 9(n + 1) 4 
R2(n ) = - n 

19(n + I) z - n2119n 2 - (n + l)2](n + I)" 
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After simple algebraic operations and direct computations, we obtain a chain of inequalities 0 > Un+l* > U n > Un* for n 

= 1, 2, 0 > Un+l* > U n > Un* > Un+ 1 for 3 < n < 52, and 0 > Un+l* > U n > Un+ 1 > Un* for n ~ 53. 
Consequently, if we assume that the system selects the state with the least energy, then near the points K12, K23, and Kn, n+l 

(n _> 53) (the value of r is fixed, while P changes) the system selects the buckling mode Wn* among all of  the unstable 

branches. At the other points Kn, n+l (3 < n < 52) the system selects the buckling mode wn+ 1. 

4. The Quasi-Winlder Foundation Model. Using the known linear equation [1] of  bar equilibrium on an elastic 

foundation, one can calculate the critical buckling loads in the same manner as for a bar without elastic foundation: 

ElYxxxx + PYxx + cy = 0, (4.1) 

However, the postbuckling behavior of the system will remain unexplained. Therefore, consider the following nonlinear 

equation as a mathematical model describing the buckling behavior of the bar-foundation system 

Elxxx + PYxx + cy = 0, (4.2) 

with curvature 

x = Yxx/(1 + yx2) 3/2 

and boundary conditions 

y(0) = Y(0 = Yxx(0) = Yxx(0 = O. (4.3) 

Using (Fig. 1) the relationships 

as well as the relationships 

as = V 'VV-~ax ,  ,Ks(x)) = y(x),  

y= = ~ / ( 1  - ~)2, ~ _ ~ ( 1  + 3~)  + 4 ~  + 1 3 ~ % ~ ,  

we write Eq. (4.2) and boundary conditions (4.3) in terms of the function w(s) and variable s. To accuracy up to fourth-order 

terms in the function w(s) and its derivatives, the initial equation and the appropriate boundary conditions take the form 
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E l w  + E I ( , ~  + 4w,v )w + P(I + ~ / 2 ) w  + cw(l - 3 ~ / 2 )  = O, (4.4) 

.,(o) = w ( L )  = w ( O )  = w ( t . )  = 0. 

The equation of the problem (4.4) differs from (2.3) and (3.2) only in the coefficient of  the t e r m  CWWs2. Repeating the 

operations of  Paragraphs 2 and 3, we obtain the following results: The postbuckling behavior of  the system is stable with 

respect to the w n mode when n 4 > 4r, and unstable when n 4 < 4r. The points with abscissas r = n4/4 are denoted by the 

symbol Hn v in Fig. 3. It is evident that the point Hn v is located to the left of the point Hn T on the straight line An (~ for every 

n. Only two modes are possible at the point K12: w 1 and w 2, the postbuckling behavior of the system being unstable with 

respect to the w I mode and neutral to accuracy up to a 2 with respect to the w 2 mode. At the points kn, n+�94 (n > 2),  except 

for the modes w n and Wn+ 1, the system may take the form (2.12), where Prnj are connected by the relationship (2.10), but 

R(n) = [Sn 2 - 2(n + 1)2]/15(n + 1) 2 - 2n21. 

The eigennumbers are expressed by means of (2.13), while for this model 

D(n) = - [12n 4 + 3n2(n + 1) 2 + 12(n + I)41/[5(n + 1) 2 - 2n21. 

At all points Kn, n+l (n > 2) the postbuckling behavior of the system is unstable for all buckling modes w n, Wn+l, w n , Wn+ 1 

(Fig. 5). Note that if one takes the expression of potential energy in the form 

L w 

I EZ~f ~2ds - v(r.- 0 + c f f  .,(1 - ~)-t/2dwds, (4.5) 
0 0 0 

then to accuracy up to fourth-order terms inclusive the equation of the problem (4.4) will be the Euler equation for this 

functional. The potential energy (4.5) for the modes w n and Wn+ 1 takes the form 

U = L(;t/L)~ n 4 + 10r1/64 ,  

U§ 1 = L(~/L)OEla4,+~,4+t(n + 1)2[ - (n  + 1) 4 + 10r1/64,  

and for the modes Wn* and Wn+1* is given by relationship (3.4), where 

46n 4 + 169n2(n + 1) 2 + 46(n + 1) 4 
Rl(n) = 15(n + I) 2 - 2n212 ' 

R2(n) .x/Sn2 - 2(n + 1) 2 (n + I)2147n 4 - 46n2(n + 1) 2 + 47(,i _.+ 1)._4] 

= V S ( n  + 1) 2 - 2n --'5" 19n ~ ~- (n-+ 1)21----19-(,~+ I) - ' i -  n21~(n+  l) 2 - 2n21" 

After algebraic operations and direction calculations, we obtain a chain of inequalities Un+ 1 > Un* > U n > Un+l* > 0 for 

2 < n _< 21 and U n +  1 > U n > Un* > Un+l* > 0 for n _> 22. 

As to the physical sense of  the model considered, the following should be noted. If  (1 - Ws2) 1/2 = cos  0(S), one may 

set in formula (4.5) 

L w L w 

f f c~(l - ~)-V2dwds = f f(cw/cosO(s))dwds. 
0 U 0 0 

In this case the reaction force of  an elastic foundation at an arbitrary point s is always directed upright and its projection onto 

a plane normal to the bar axis is equal in absolute magnitude to cw. On the other hand, since, to accuracy up to fourth-order 

inclusive in the function w(s) and its derivatives, we have 

L w L w 

f f cw(1 - ~)-VZdwds = f f r + ~ / 2 ) d w d s  = 
0 0 0 0 

L w  L L w  

f f I2cw - e,~1 - ~ /2 ) ]dwds  ~- c f w2ds - c f f w(1 - ~)V2dwds, 
0 0 0 0 0 

the expression (4.5) can be obtained by subtracting (3.1) from doubled (2.1). Hence, in this case the response of  the elastic 

foundation, up to the given accuracy, can be considered to be equal to the above combination similar responses that were 
considered in Paragraphs 2 and 3. 

5. Genera l ized  Model .  Let us consider the family of potential functions 
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| L L ~,, 

l.fl = -~ E1  f ~2ds  - P(L - l) + f f cw(1 - w2)~/2dwds. 
o o o (5 .1 )  

It is evident that the expression (4.5) as well as Eqs. (2.1) and (3.1) taken as starting ones for the models that were concerned 

in the preceding paragraphs are the particular cases of the expression (5.1) when 13 = - 1 ,  0, and 1, respectively. Thus, the 

formulas given below with the properly chosen values of/3 coincide with the appropriate formulas of  the models considered. 

The Euler equation corresponding to the functional (5.1) that is dependent on the parameter/3 can be written, accuracy up to 

fourth-order terms in the function w(s) and its derivatives, as follows: 

E l w  + El(w2 + 4 w w ) w  + P(1 + ~ / 2 ) w  + cwIl  - (1 - p / 2 ) ~ l  = O. 

For the prime eigenvalue the first correction is 

A ~  = ~,,2[n4 - r(3 - f l )  1 / 8 ,  
n (5.2) 

and for the multiple eigenvalue, i.e., when r = n2(n + 1) 2, 

1 (7 - 5fl)n 4 + (3fl 2 -  2fl - 2 )n2 (n  + 1) 2 + (7  - 5f l ) (n  + 1) 4 2 
At1)  __. _ 2 2 

" 8 y n ( I  - fl)n 2 - (3  - 2~)  (n  + 1) 2 p,,,n. 

The complex modes of the system deflection are expressed by the formula (2.12), where the coefficients Pmj are related by the 

equation 

z (1 - p ) ( n +  1)2- ( 3 -  2~)n 2 2 
P,,,~,§ = ( I  /~)n 2 - (3 - 2p)(n + I) 2p'~'' (5.3) 

and exist, when r = n2(n + 1) 2, for such n and/3 for which the coefficient of Pmj in Eq. (5.3) is greater than zero. For a 

system that assumes the buckling mode w n, the potential energy function is expressed as 

= L(z~/L)~Ela~y~n2l-n4 + r(3 - 7fl)1/64, (5.4) 

and for the modes w m, m = n, n + 1, we obtain 

lfl = L(1t/L)6Ela4p~y~n4{[n2 + (n + I)2IR~ __. 64n2(n + 1)213R2}/64, 

where 

R 1 

(4fl 3 + 7fl 2 - 29fl + 14) I n  4 + (n  + 1)41 - (31fl  3 - 84fl 2 + 58fl + 4 ) n 2 ( n  + 1) 2 

[ (1  - f l ) n  2 - ( 3  - 2/~) ( n  + 1)212 

~( 1 - f l ) ( n  + " 1 )  2 -  ( 3 -  2 ~ ) n  2 ( 2 8 -  1 9 f l ) [ n  4 + (n  + 1)41 - ( 2 2 / ~ -  2 4 ) n a ( n  + 1) 2 
g 2 = 

(1 f l ) n  2 -  ( 3 -  2 f l ) ( n  + I )  2 1 9 ( n  + 1) 2 n Z l I g n  2 -  ( n +  I )  2 ] I ( l  - /~)r, 2 -  ( 3 -  2 4 / ) ( n  + 1)21 . 

Now, let us analyze the expression (5.4), which takes the form of a germ of the dual cusp catastrophe when r = 0. In order 

for the expression with r _> 0 (5.4) to take the above form, it is necessary and sufficient for the inequality - n  4 + r(3 - 7/3) 

< 0 to be met for all r from the interval (n - 1)an a < r _< n2(n + 1) 2, when the postbuckling behavior of the system in the 

vicinity of the first'critical load is concerned, i.e., provided that B > 11/28. If  fl > 3/7, then the inequality - n  4 + r(3 - 

7B) < 0 is fulfilled for any r >_ 0, i.e., the expression Un# of the potential energy function of  the bar-foundation system 

which assumes any buckling mode w n is always in the form of a germ of the dual cusp catastrophe when fl > 3/7. There is 

no violation of the structural stability requirements [11] for such values of ft. Recall that, of the three models considered, the 

inequality fl > 3/7 is satisfied solely by the model in Paragraph 3 for which B = 1. On the above basis it may be concluded 

that this model describes the postbuckling behavior of the bar-foundation system most adequately.' For the model, the potential 
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energy function expressions are in the form of a germ of the dual cusp catastrophe for every buckling mode and value of n and 

r, i.e., there is no violation of the structural stability requirement for a family of the potential functions. 

Analysis of Eq. (5.3) shows that, if 1/2 < /3 < 11/7, then apart from w n and Wn+ 1 for the dimensionless foundation 

stiffness coefficient r = n2(n + 1) 2, where n is any natural number, complex buckling modes win* are possible. There is no 

w m mode, and when 3 = 2, complex modes are possible for r = n2(n + 1) 2 for the other 3, when n is larger than some N 

> 1. As can be seen from Eq. (5.2), when 3 >-- 3, for any r > 0, the postbuckling behavior with respect to each w n mode 

is stable; however, for 3 < 3, the behavior becomes unstable, when r > n4/(3-/3). Moreover, if/3 < 2, then for every w n 
mode there is always a value of r* of the interval ( n -  1)2n 2 < r* < n2(n + 1) 2 such that the postbuckling behavior of the 

system is unstable with respect to the mode w n, where r > r*. Note that it suffices to take any r from the interval n 4 < r < 

n2(n + 1) 2 as such r*. 

Figure 6 shows a plot of the dimensionless parameter An(0) of the critical load versus the dimensionless stiffness 

coefficient of the foundation r for a model where 3 = 2. The line segments An (0) close to which the postbuckling behavior of 

the system is stable are shown in Fig. 6 by the solid line; and close to which it is unstable, by the broken line. For/3 < 2 the 

value of r at which the postbuckling behavior of the system with respect to the mode w n becomes neutral is less than that when 

3 = 2 (in Fig. 6 the corresponding points on the straight lines are labeled by crosses). In the models with/3 > 11/4 only, the 

postbuckling behavior of  the system near the first critical load is stable for every r. However, when the second correction of 

An (2) for the eigenvalue An (~ of  the linearized problem is taken into account, the situation changes for the worse or, more 

precisely, the domain of stable postbuckling behavior of the system is narrowed. In fact, the second correction is 

- - 5 1 2  Fn + ~.~_ r _ 24/32 + 26/3 _ 33 + (fl - ) ( 5 3 + 6 )  
. 9 n  / r  -- 1 " (5.5) 

Let us show that An (2) < 0 for every 3 and n 4 < r < n2(n + 1) 2. For these values of p the inequality 9n4/r - 1 > 5/4 is 

valid. Therefore, for An (2) we have the estimate 

AI, 2~ < 74nZ{21n 4 + r [ - 2 4 p  ~ + 263 - 33 + 4(/3 - 2) (53 + 6 ) / 5 1 } / 5 1 2  = 

.7~n2{21n ' - r(10032 - 114/3 + 213) /5} /512  < 7~n2(21n ~ - 36r) /512.  

Hence, An(2) < 0 for r > 7n4/12, i.e., everywhere where An(l) < 0. 
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